Annual Drinking Water Quality Report INDIAN CREEK HOMEOWNERS AND WATER ASSN. IL1135250 Annual Water Quality Report for the period of January 1 to December 31, 2018 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. The source of drinking water used by INDIAN CREEK HOMEOWNERS AND WATER ASSN. is Ground Water For more information regarding this report contact: Name FRANK COTTRELL Phone 309-275-9841 Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. #### Source of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. • of Water **GW** Rep Status Location #### Fource Water Assessment want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly checkeled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop of the completed Source water assessments, including: Importance of ource water; Susceptibility to Contamination Determination; and documentation/recommendation of Source water Protection Efforts, you may access the Illinois EPA chaite at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl. Source of Water: INDIAN CREEK HOMEOWNERS AND WATER ASSN. To determine Indian Creek Homeowner and Water Association's susceptibility to groundwater contamination, a Well Site Survey, published in 1992 by the Illinois EPA, and Source Water Protection Plan were reviewed. Based on the information contained in these documents, no potential sources of groundwater contamination are present that could pose a hazard to groundwater pumped by the Indian Creek Homeowner and Water Association community water supply well. Based upon this information, the Illinois EPA has determined that Indian Creek Homeowner and Water Association Well #1 is not susceptible to ICC, VCC, or SOC contamination. This determination is based on a number of criteria including: monitoring conducted at the well; monitoring conducted at the entry point to the distribution system; and the available hydrogeologic data for the well. In anticipation of the U.S. EPA's proposed Ground Water Rule, the Illinois EPA has determined that Indian Creek Homeowner and Water Association's community water supply well is not vulnerable to viral contamination. This determination is based upon the evaluation of the following criteria during the Vulnerability Waiver Process: the community's well is properly constructed with sound integrity and proper site conditions; there is a hydrogeologic barrier that restricts pathogen to require source and sanitary defects have been mitigated such that the source water is adequately protected; monitoring data did not indicate avisation of disease outbreak; and the sanitary survey of the water supply did not indicate a viral contamination threat. However, having stated this, the a history of disease outbreak; and the sanitary survey of the water supply did not indicate a viral contamination threat. However, having stated this, the U.S. EPA is proposing to require States to identify systems in karst, gravel and fractured rock aquifer systems as sensitive. Water systems utilizing these U.S. EPA is proposing to require States to identify 3036 # Water Quality Test Results | | Definitions: | The following tables contain scientific terms and measu | , some | which may re: | re exp | ation. | | | |---|--|--|---------|----------------|--------|--------|------------|-------| | | Avgt | Regulatory compliance with some MCLs are based on runni | annual | rerage f mont: | sampl: | | | | | | Level 1 Assessment: | A Level 1 assessment is a study of the water system to total coliform bacteria have been found in our water sy | ∍m. | | | | | | | | Level 2 Assessment: | A Level 2 assessment is a very detailed study of the w possible) why an E. coli MCL violation has occurred and system on multiple occasions. | : why t | il coli orm ba | ria na | been I | nd in dr v | vater | | | | The highest level of a contaminant that is allowed in dusing the best available treatment technology. | | | | | | | | | Maximum Contaminant Level Goal or MCLG: | The level of a contaminant in drinking water below which for a margin of safety. | | | | | | | | 1 | Maximum residual disinfectant level or NRDL: | The highest level of a disinfectant allowed in drinking disinfectant is necessary for control of microbial cont | nants. | | | | | | | | Maximum residual disinfectant level goal or MRDLG: | The level of a drinking water disinfectant below which reflect the benefits of the use of disinfectants to con: | re is | known z expe | d risk | healt | MKDL 3 C | o noc | | | naı | not applicable. | | | | | | | | | mrem: | millirems per year (a measure of radiation absorbed by | | | | | | | | | ppb: | micrograms per liter or parts per billion - or one ounc | .n 7,35 | 100 gal ons of | ter. | | | | | | ** | milligrams per liter or parts per million - or one ounc | .n 7,35 | allons of wat | | | | | | | bbut | A required process intended to reduce the level of a co | minant | drinking wat | | | | | | | Treatment Technique or TT: | ti wadaaaa t | | | | | | | ## Regulated Contaminants | Disinfectants and
Disinfection By-
Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | |---|--------------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|--|--| | Chlorine | 12/31/2018 | 0.7 | 0.4 - 0.8 | MRDLG = 4 | MRDL = 4 | ppm | И | Water additive used to control microbes. | | | Haloacetic Acids
(HAA5) | 08/24/2017 | 5.2 | 5.2 - 5.2 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | | Inorganic
Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | | Arsenic | 2018 | 4.25 | 4.25 - 4.25 | 0 | 10 | ppb | N | Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes. | | | Barium | 2018 | 0.265 | 0.265 - 0.265 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | | Frankide | 2018 | 0.77 | 0.765 - 0.77 | 4 | 4.0 | ppm | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. | | | Iron | 2018 | 1.54 | 1.54 - 1.54 | | 1.0 | ppm | N | This contaminant is not currently regulated by
the USEPA. However, the state regulates.
Erosion of natural deposits. | | | Manganese | 2018 | 28.1 | 28.1 - 28.1 | 150 | 150 | ppb | N | This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits. | | | Sodium | 2018 | 103 | 103 - 103 | | | ppm | N | Erosion from naturally occuring deposits. Used in water softener regeneration. | | | Radioactive
Contaminants | Collection
Date | Highest Level
Detected | Range of Level | MCLG | MCL | Units | Violation | n Likely Source of Contamination | | | | 10/11/2017 | 1.53 | 1.53 - 1.53 | 0 | 5 | pCi/L | И | Erosion of natural deposits. | | | Combined Radium
226/228 | 10,11,201 | | | | 15 | pCi/L | N | Erosion of natural deposits. | | | Gross alpha excluding radon and uranium | 10/07/2014 | 0.64 | 0.64 - 0.64 | 0 | 15 | pci/L | | | | ### Violations Table ## Consumer Confidence Rule The Consumer Confidence Rule requires community water systems to prepare and provide to their customers annual consumer confidence reports on the quality of the water delivered by the systems. | Violation Type | Violation Begin | Violation End | Violation Explanation | |-----------------------------------|-----------------|---------------|--| | CCR ADEQUACY/AVAILABILITY/CONTENT | 07/01/2017 | | We failed to provide to you, our drinking water customers, an annual report that adequately informed you about the quality of our drinking water and the risks from exposure to contaminants detected in our drinking water. |